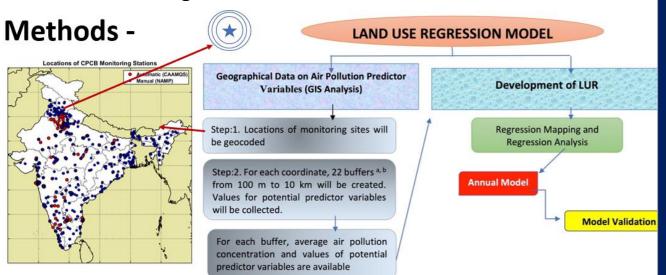
National Scale NO₂ Exposure **Assessment in India using Satellite Based Land Use Regression Model**

Neha Singh*, Luke Knibbs#, Joseph Van Buskirk, Sagnik Dey# (*Corresponding Author- neha.singh@uq.net.au, #Joint PhD Supervisors)


Background:

Globally 6.67 million deaths (12% of total) were attributable due to air pollution – SOGA 2020

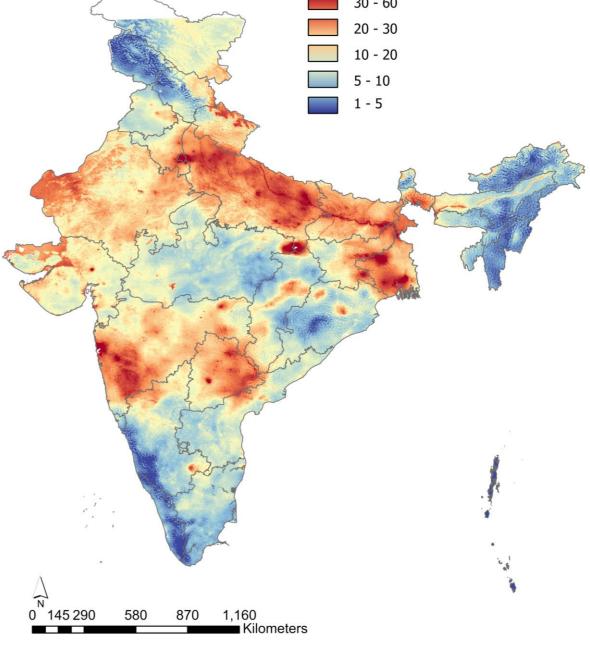
ENVIRONMENTAL HEALTH PATHWAY Study Objective:

To develop exposure model for nitrogen dioxide using satellite based land use regression model for India


Modelling Approach: Model Types - (1) Automatic Monitoring Stations only; (2) Both Automatic and Manual **Monitoring Stations**

Model Fitting :

- We used total 270 predictor variables for model fitting and out of which final model has chosen 4 variables
 - 1. $OMI NO_2$
 - 2. Population Density (7000 m buffer)
 - 3. Tree Cover (10,000 m buffer)
 - 4. Vegetation Cover (2000m buffer)
- Supervised forwards additional linear regression method was used for model fitting


Cross Validation : 10 fold cross validation was used to calculate a spatial R² for Each of the fitted Model

~93% Indian Population is Exposed to NO₂ Levels **Greater Than** WHO Safe Limits (10 µg/m³)

Results

Model Fit	Number of Monitors	Moran's I (p value)	R²	Model R ²	Model RMSE
Automatic Only	145	0.411	0.601	0.593	9.39
Automatic & Manual Both	729	<0.001	0.73	0.696	7.16
NO₂ Exposure (µg/m³) - 2019 (100 m)					
ζ.			30 - 60 20 - 30 10 - 20 5 - 10		

Conclusions

- Our best model was able to predict 73.1% variability 1. in NO₂
- This very high spatial scale NO₂ exposure dataset 2. (2015 - 2021) will be very helpful in terms of further air pollution epidemiological studies which are very critical when more than 90% population is exposed to such high NO₂ levels.

References

Knibbs, Luke D., et al. "A national satellite-based land-use regression model for air pollution exposure assessment in Australia." Environmental research 135 (2014): 204-211..